A dileucine motif is involved in plasma membrane expression and endocytosis of rat sodium taurocholate cotransporting polypeptide (Ntcp).
نویسندگان
چکیده
The sodium taurocholate cotransporting polypeptide (Ntcp) is the major uptake transporter for bile salts into liver parenchymal cells, and PKC-mediated endocytosis was shown to regulate the number of Ntcp molecules at the plasma membrane. In this study, mechanisms of Ntcp internalization were analyzed by flow cytometry, immunofluorescence, and Western blot analyses in HepG2 cells. PKC activation induced endocytosis of Ntcp from the plasma membrane by ~30%. Endocytosis of Ntcp was clathrin dependent and was followed by lysosomal degradation. A dileucine motif located in the third intracellular loop of Ntcp was essential for endocytosis but also for processing and plasma membrane targeting, suggesting a dual function of this motif for intracellular trafficking of Ntcp. Mutation of two of five potential phosphorylation sites surrounding the dileucine motif (Thr225 and Ser226) inhibited PKC-mediated endocytosis. In conclusion, we could identify a motif, which is critical for Ntcp plasma membrane localization. Endocytic retrieval protects hepatocytes from elevated bile salt concentrations and is of special interest, because NTCP has been identified as a receptor for the hepatitis B and D virus.
منابع مشابه
Protein kinase C induces endocytosis of the sodium taurocholate cotransporting polypeptide.
Bile salts influence signaling and metabolic pathways. In hepatocytes, the sodium taurocholate cotransporting polypeptide (Ntcp) is a major determinant of intracellular bile salt levels. Short-term downregulation of Ntcp is not well characterized to date. FLAG and enhanced green fluorescent protein (EGFP) tags were cloned to the extra- and intracellular termini of Ntcp. Endocytosis of Ntcp in t...
متن کاملMolecular regulation of sinusoidal liver bile acid transporters during cholestasis.
Impairment of the hepatic transport of bile acids and other organic anions will result in the clinically important syndrome of cholestasis. Cloning of a number of specific hepatic organic anion transporters has enabled studies of their molecular regulation during cholestasis. The best characterized transport system is a 50-51 kDa sodium-dependent taurocholate cotransporting polypeptide (ntcp), ...
متن کاملCharacterization of cloned mouse Na+/taurocholate cotransporting polypeptide by transient expression in COS-7 cells.
The mouse Na+/taurocholate cotransporting polypeptide transiently expressed in COS-7 cells caused sodium-dependent uptake of [3H]taurocholic acid with Km and Vmax values of 18 microM and 102 pmol/mg protein/min, respectively. This Km value is comparable to that for rat NTCP and higher than that for human NTCP. Substrate specificity was evaluated by measuring inhibitory effects of unlabeled bile...
متن کاملRole of primary bile salts in the regulation of sinusoidal substrate uptake in rat liver
Background Bile salts undergo enterohepatic circulation which is essential for bile salt homeostasis. From the biliary tract, they are excreted into the small intestine, absorbed into the blood and transported back to the liver. The sinusoidal uptake systems of the liver efficiently extract bile salts and other substrates from portal blood. In rat liver, these systems include Ntcp (sodium tauro...
متن کاملSodium taurocholate cotransporting polypeptide (NTCP) deficiency: Identification of a novel SLC10A1 mutation in two unrelated infants presenting with neonatal indirect hyperbilirubinemia and remarkable hypercholanemia
Sodium taurocholate cotransporting polypeptide (NTCP) is encoded by the gene SLC10A1 and expressed in the basolateral membrane of the hepatocyte, functioning to uptake bile acids from plasma. Although SLC10A1 has been cloned and NTCP function studied intensively for years, clinical description of NTCP deficiency remains rather limited. This study reported the genotypic and phenotypic features o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 305 10 شماره
صفحات -
تاریخ انتشار 2013